HOW TO DO A p-DESCENT ON AN ELLIPTIC CURVE
نویسنده
چکیده
In this paper, we describe an algorithm that reduces the computation of the (full) p-Selmer group of an elliptic curve E over a number field to standard number field computations such as determining the (p-torsion of) the S-class group and a basis of the S-units modulo pth powers for a suitable set S of primes. In particular, we give a result reducing this set S of ‘bad primes’ to a very small set, which in many cases only contains the primes above p. As of today, this provides a feasible algorithm for performing a full 3-descent on an elliptic curve over Q, but the range of our algorithm will certainly be enlarged by future improvements in computational algebraic number theory. When the Galois module structure of E[p] is favorable, simplifications are possible and p-descents for larger p are accessible even today. To demonstrate how the method works, several worked examples are included.
منابع مشابه
A descent method for explicit computations on curves
It is shown that the knowledge of a surjective morphism $Xto Y$ of complex curves can be effectively used to make explicit calculations. The method is demonstrated by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve with period lattice $(1,tau)$, the period matrix for the Jacobian of a family of genus-$2$ curves complementing the classi...
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملA NEW PROTOCOL MODEL FOR VERIFICATION OF PAYMENT ORDER INFORMATION INTEGRITY IN ONLINE E-PAYMENT SYSTEM USING ELLIPTIC CURVE DIFFIE-HELLMAN KEY AGREEMENT PROTOCOL
Two parties that conduct a business transaction through the internet do not see each other personally nor do they exchange any document neither any money hand-to-hand currency. Electronic payment is a way by which the two parties transfer the money through the internet. Therefore integrity of payment and order information of online purchase is an important concern. With online purchase the cust...
متن کاملFinding Rational Points on Elliptic Curves Using 6-descent and 12-descent
We explain how recent work on 3-descent and 4-descent for elliptic curves over Q can be combined to search for generators of the Mordell-Weil group of large height. As an application we show that every elliptic curve of prime conductor in the SteinWatkins database has rank at least as large as predicted by the conjecture of Birch and Swinnerton-Dyer.
متن کاملAn efficient blind signature scheme based on the elliptic curve discrete logarithm problem
Elliptic Curve Cryptosystems (ECC) have recently received significant attention by researchers due to their high performance such as low computational cost and small key size. In this paper a novel untraceable blind signature scheme is presented. Since the security of proposed method is based on difficulty of solving discrete logarithm over an elliptic curve, performance of the proposed scheme ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003